For Quick Alerts
ALLOW NOTIFICATIONS  
For Daily Alerts
Oneindia App Download

Scientists reveal the "secret life" of friction

By Super Admin
|
Google Oneindia News

Washington, March 9 (ANI): In a new research, scientists at the Hebrew University of Jerusalem have revealed that friction in physics has had a "secret life" of its own.

The scientists show how frictional strength evolves from extremely short to long time scales.

The new information could be useful in assessing a wide range of atural and man-made phenomena - from earthquakes to computer ard drives

"Although friction plays such an important role in so many aspects of our lives, it is surprising that many key processes embodied within frictional motion have been far from understood," said Jay Fineberg, the Max Born Professor of Natural Philosophy at the Hebrew University.

Fineberg said that while frictional motion is often thought of as the motion of two bodies against each other, separated by a perfectly smooth plane, in fact, due to the microscopic roughness of sliding surfaces, all of the contact between sliding bodies takes place in only a tiny area.

Thus, only a sparsely spaced microscopic "bumps" are responsible for maintaining the contact between two sliding bodies.

It is the behavior of these bumps which governs friction.

These microscopic contacts have a life of their own that very much differs from that of bulk materials, commented Fineberg.

It is that "secret life" that has now been described in the research of the Hebrew University researchers.

Their study shows how frictional strength evolves from extremely short to long time scales.

Millionths of seconds before bodies start to slide against one another, a miniature "earthquake" tears through the interface and ruptures the contacts, according to Fineberg.

From that moment of contact rupture, four distinct and interrelated phases of evolution are identified, he said.

These include the violent rupture phase, resultant contact weakening, and continuing through renewal and re-strengthening.

These results provide a comprehensive picture of how frictional strength evolves.

Fineberg emphasized that a fundamental understanding of these processes is critical to a variety of important problems and applications, such as the evolution of frictional strength at short-time impacts as in, for example, the read/write cycle of hard drives, frictional dissipation in an internal combustion engine, and the dynamics of earthquakes.

At the other end of the spectrum, long-time strengthening processes are critical when considering the need for strengthening a fault or frictional interface.

"This understanding could lead the way to manipulation and control of such dynamics, at small and large scales alike," said Fineberg. (ANI)

For Daily Alerts
Get Instant News Updates
Enable
x
Notification Settings X
Time Settings
Done
Clear Notification X
Do you want to clear all the notifications from your inbox?
Settings X
X