• search
For Quick Alerts
ALLOW NOTIFICATIONS  
For Daily Alerts

Frogs provide clues about alcohol's effects during pregnancy

By Super Admin
|

Washington, Apr 6 (ANI): Scientists have successfully used the African frog Xenopus as a tool to identify important clues about the effects of maternal consumption of alcohol in early pregnancy.

As the Xenopus embryos are large, easy to work with and very responsive to environmental cues, they make for ideal instruments to understand early vertebrate development.

Foetal alcohol spectrum disorder (FASD) and Foetal alcohol syndrome (FAS) cause malformations in babies, including facial defects, short stature, and mental and behavioural abnormalities.

Alcohol consumption prevents normal development by inhibiting the production of retinoic acid.

Normally, the levels of retinoic acid made in different areas of the embryo provide cells with necessary information about their proper location and fate.

In the new research, it has been shown that alcohol steals away the molecules that make retinoic acid and use them for its own process of detoxification, resulting in cellular disorientation during a critical period of development.

The study, provides evidence that the characteristics associated with FASD and FAS come from competition of alcohol for key molecules in a pathway that produce retinoic acid from vitamin A.

Retinoic acid is needed for correct positioning of cells in developing embryos and by preventing its normal production.

Alcohol keeps cells from migrating to their correct positions and maturing properly.

Researchers at the Hebrew University in Israel have found that shutting down a molecule needed to produce retinoic acid, known as retinaldehyde dehydrogenase (RALDH2), increases sensitivity of developing embryos to low doses of alcohol.

On the other hand, more of the molecule RALDH2 protected embryos from the negative effects of alcohol.

The research provides evidence that alcohol 'hijacks' RALDH2 molecules for its own breakdown process, and steals it away from its important role in synthesizing positional and maturation cues during development.

The study has been published in Disease Models and Mechanisms (DMM). (ANI)

For Daily Alerts
Get Instant News Updates
Enable
x
Notification Settings X
Time Settings
Done
Clear Notification X
Do you want to clear all the notifications from your inbox?
Settings X
X
We use cookies to ensure that we give you the best experience on our website. This includes cookies from third party social media websites and ad networks. Such third party cookies may track your use on Oneindia sites for better rendering. Our partners use cookies to ensure we show you advertising that is relevant to you. If you continue without changing your settings, we'll assume that you are happy to receive all cookies on Oneindia website. However, you can change your cookie settings at any time. Learn more