• search
For Quick Alerts
ALLOW NOTIFICATIONS  
For Daily Alerts

Decoded: What 'silences' X chromosome in girls

By Ians English
|

New York, Jan 11: Nearly every girl and woman on Earth carries two X chromosomes in each of her cells -- but one of them does (mostly) nothing. Do you know why?

That is because it has been silenced, keeping most of its DNA locked up and unread like a book in a cage, scientists led by an Indian-American researcher from the University of Michigan Medical School have revealed.

Decoded: What 'silences' X chromosome in girls.
A wide range of relatively rare diseases - as well as relatively common conditions such as autism, haemophilia and muscular dystrophy - are linked to problems with genes found on the X chromosome.

The findings could help lead to new ways of fighting diseases linked to X chromosomes in girls and women -- the kind that occur when the X chromosome that does get read has misprints and defects.

Also read: UK: Scientists sequence the last chromosome

The team found that a known molecule called "Xist RNA" is insufficient to silence the X chromosome.

"Xist is widely believed to be both necessary and sufficient for X silencing," said team leader Sundeep Kalantry.

"We, for the first time, show that it is not sufficient and there have to be other factors - on the X-chromosome itself that activate 'Xist' and then cooperate with 'Xist RNA' to silence the X-chromosome," he elaborated.

In the future, it may be possible to change the level of these other factors in cells and turn on the healthy, silenced copy of a gene that lies on the inactive X-chromosome, Kalantry added.

Although most genes on the inactive X chromosome are fully silenced, a handful of the genes on the inactive X are, in fact, active.

It is this set of X-inactivation "escapees" that the research team was focused on.

Since the "escapee" genes are expressed from both the active and the inactive X-chromosomes in females, they produce more gene product in female cells than in male cells which only have a single X.

According to Kalantry, it is this higher "dose" in females that triggers X-inactivation selectively in females; the lower dose in males is insufficient.

"That means that if researchers can determine exactly which factors cause X-inactivation to occur, they could find ways to affect the activity of genes on the X chromosomes - specifically, genes involved in certain diseases." the authors noted.

Many of them have an impact on an individual's thinking and memory capacity, and other aspects of cognition and intelligence.

"In females, we could envision 'reawakening' a healthy copy of an X-linked gene on the inactive X chromosome, by modulating the dose of these so-called escapee genes and ameliorating the effects of the unhealthy copy," Kalantry explained.

Unfortunately, this approach probably won't help males with X-linked diseases, because they only have a single X chromosome in each cell and inactivating it would be harmful.

The new paper appeared in the journal Proceedings of the National Academy of Sciences.

IANS

For Daily Alerts
Get Instant News Updates
Enable
x
Notification Settings X
Time Settings
Done
Clear Notification X
Do you want to clear all the notifications from your inbox?
Settings X
We use cookies to ensure that we give you the best experience on our website. This includes cookies from third party social media websites and ad networks. Such third party cookies may track your use on Oneindia sites for better rendering. Our partners use cookies to ensure we show you advertising that is relevant to you. If you continue without changing your settings, we'll assume that you are happy to receive all cookies on Oneindia website. However, you can change your cookie settings at any time. Learn more