One cause of cognitive decline in aging population identified

Subscribe to Oneindia News

Washington, June 3 (ANI): American scientists have identified certain types of specializations on nerve cells called "spines" that human lose as they age and the consequent effect on brain function.

The study, conducted by researchers at Mount Sinai School of Medicine, has appeared in the Journal of Neuroscience.

John H. Morrison, Dean of Basic Sciences and the Graduate School of Biological Sciences and Professor of the Department of Neuroscience, Mount Sinai School of Medicine, said: "We know that when we age, we lose certain spines, but we did not know which ones and how their loss impacted cognition.

"This study shows which spines are lost and what their impact is on brain function, giving us a foundation to research treatment interventions to protect against age-related cognitive decline."

The research team was led by Dr. Morrison studied six young adult and nine older rhesus monkeys as they participated in a delayed response test.

The monkeys watched as food was baited and hidden, and then a screen was put in front of them so they could no longer see the location of the hidden reward.

At the beginning of the test, the screen was raised immediately and the monkeys were able to find the food reward right away.

The subject's memory was tested by increasing the time that the reward was blocked from view to test if the monkeys retained where the reward was placed over longer intervals of time.

Aged monkeys performed significantly worse on the tests than young monkeys, especially as the time intervals increased.

Morrison's team then used microscopic techniques to visualize the spines on nerve cells within the prefrontal cortex, an area of the brain that mediates high-level learning.

Nerve cells in the prefrontal cortex contain two types of spines: hin, dynamic spines, which are key to learning new things, establishing rules, and planning, and large, mushroom-shaped spines that are very stable and likely mediate long-term memories and highly stable information that we would consider expertise.

The researchers determined that the older monkeys lacked the thin spines but retained the larger spines, indicating that the loss of the thin spines may be responsible for the monkeys' inability to learn and retain information during the test.

For the first time, the researchers determined that the large spines were stable, which provides a synaptic basis for the observation that expertise and skills learned early in life are often maintained into old age.

Dr. Morrison said: "Researchers have long wondered why aging affects our ability to learn and remember new tasks and information, yet we retain well-established information, such as career expertise, well into old age.

"These data indicate that there is a biological reason why people cannot learn new things at an older age, but can retain knowledge learned years before, such as a professor teaching into his 80s."

Dr. Morrison noted that this study will allow for the development of prevention strategies in youth, such as further emphasis on learning skills and broadening expertise.

He added: "The data also provide a foundation for therapies to lessen cognitive decline, through pharmaceutical and lifestyle interventions," he added. (ANI)

Please Wait while comments are loading...