Snail shells to inspire next gen 'impermeable' armor

Subscribe to Oneindia News

Washington, January 19 (ANI): In a new research, a team of materials scientists has found new facts about a tiny snail that lives on the ocean floor, which could help scientists design better armor for soldiers and vehicles.

The team, led by MIT Associate Professor Christine Ortiz, report that the shell of the so-called "scaly-foot" snail is unlike any other naturally occurring or manmade armor.

The study suggests that its unique three-layer structure dissipates energy that would cause weaker shells to fracture.

Copying various aspects of the structure could help scientists design better armor for military use, according to Ortiz, who is a member of MIT's Institute for Soldier Nanotechnologies.

Ortiz' attention was drawn to this interesting gastropod in 2003, when its discovery was first reported.

The snail lives in a relatively harsh environment on the floor of the Indian Ocean, near hydrothermal vents that spew hot water.

Therefore, it is exposed to fluctuations in temperature as well as high acidity, and also faces attack from predators such as crabs and other snail species.

When a crab attacks a snail, it grasps the snail's shell with its claws and squeezes it until it breaks - for days if necessary.

The claws generate mechanical energy that eventually fractures the shell, unless it is strong enough to resist.

In the new research, Ortiz and her colleagues, including MIT Dean of Engineering Subra Suresh, report that the shell of the hot vent gasotropod has several features that help dissipate mechanical energy from a potential penetrating predatory attack.

Of particular importance is its tri-layered shell structure, which consists of an outer layer embedded with iron sulfide granules, a thick organic middle layer, and a calcified inner layer.

Most other snail shells have a calcified layer with a thin organic coating on the outside.

In the scaly foot gastropod, simulations suggest that the relatively thick organic middle layer can absorb much energy during a penetrating attack.

It may also help to dissipate heat and thermal fluctuations exhibited near hydrothermal vents.

Ortiz is now looking at host of natural exoskeletons in order to extract protective design principles, including chitons, urchins, beetles, and armored fish. (ANI)

Please Wait while comments are loading...