Robo fish may soon monitor water quality

Subscribe to Oneindia News

Washington, November 3 (ANI): In a new research, scientists at the Michigan State University (MSU) are developing robots that use advanced materials to swim like fish to probe underwater environments and monitor water quality.

The research is being carried out by Xiaobo Tan, an assistant professor of electrical and computer engineering, MSU, and Elena Litchman, an assistant professor of zoology, MSU.

"Fish are very efficient," explained Tan. "They can perform very efficient locomotion and maneuvering in the water," he added.

Robotic fish - perhaps schools of them operating autonomously for months - could give researchers far more precise data on aquatic conditions, deepening the knowledge of critical water supplies and habitats.

Tan and Litchman recently won funding from the National Science Foundation to integrate their research.

"The robotic fish will be providing a consistent level of data that hasn't been possible before," Litchman explained.

"With these patrolling fish, we will be able to obtain information at an unprecedentedly high spatial and temporal resolution. Such data are essential for researchers to have a more complete picture of what is happening under the surface as climate change and other outside forces disrupt the freshwater ecosystems. It will bring environmental monitoring to a whole new level," she added.

The robotic fish will carry sensors recording such things as temperature, dissolved oxygen, pollutants and harmful algae.

Tan is also developing electronics so the devices can navigate and communicate in their watery environment.

"This project will greatly advance bio-robotic technology," Tan said. "The project is very practical and we are designing the fish to be inexpensive so they can be used in various applications like sampling lakes, monitoring aquafarms and safeguarding water reservoirs," he added.

To mimic how fish swim and maneuver, Tan builds "fins" for robotic fish with electro-active polymers that use electricity to change shape.

Similar to real muscle tissue, ion movements twist and bend the polymer when voltage is applied.

The effect works in reverse, too - slender "feelers" could signal maneuvering circuits in a sort of electro-active central nervous system. Infrared sensors also could be used for "eyes" to avoid obstacles.

The robots will communicate wirelessly with a docking station after surfacing at programmed intervals and could similarly be linked to other robotic fish for coordinated maneuvers or signal relay.

Global positioning system technology and inertial measurement units will allow precise navigation. (ANI)

Please Wait while comments are loading...