Future smart materials may mimic fish biology

Subscribe to Oneindia News

Washington, August 22 (ANI): In a new research, a team of scientists is aiming to develop smart material systems inspired by the biology of fish.

The remarkable ability of fish to maneuver in tight places, or to hover in one area efficiently, or to accelerate in a seemingly effortless fashion has researchers wondering if they can create smarter materials that emulate the biology of these vertebrates.

With an eye towards homeland defense needs, engineers have also noted that fish through neuromasts or 'hairs' in the lateral line are able to sense very small changes in their watery environment that allows them to detect and track prey and to form hydrodynamic images of the environment.

Michael Philen, assistant professor of aerospace and ocean engineering (AOE) at Virginia Tech, has pulled together a team of researchers to study these abilities and hopefully develop biologically inspired material systems that have hierarchically structured sensing, actuation, and intelligent control.

This research will lead to state-of-the-art advanced materials that can intelligently sense and actuate a network of distributed robust sensors and actuators.

As a post doctoral researcher at Penn State, Philen spent time on a three-year project with the Defense Army Research Projects Agency (DARPA) to develop a new structure/actuation system inspired by the mechanical, chemical, and electrical properties of plants.

Philen's proposal to the National Science Foundation's (NSF) Emerging Frontiers in Research and Innovation program to study fish to create smarter materials has received 1.95 million dollars in funding.

Philen's co-principal investigators are Harry Dorn, professor of chemistry, and Don Leo, associate dean of engineering, both at Virginia Tech.

George Lauder, a professor of biology at Harvard, and James Tangorra, an assistant professor of mechanical engineering and mechanics at Drexel, round out the team.

Working together, the team will develop distributed sensors and actuators using nanotechnology, advanced composite technology, and smart polymeric materials for understanding the organization and structure of the control systems fish use for sensing and maneuvering.

With the inclusion of Harvard University, the research team also plans to develop a traveling exhibit on robotic fish that showcases the biology of aquatic propulsion, new actuator and sensing technologies and how these can be integrated to design a robotic fish.

The team of researchers plans to create a robotic fish-like underwater vehicle by integrating their biological investigations of the fish with engineering knowledge about sensors and actuators.

"We view this as an exciting opportunity to create a transformative leap in the development of new biologically inspired material systems," Philen said. (ANI)

Please Wait while comments are loading...